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Abstract--The objectwe of th~s study is to predict the forced convection heat transfer for spheres m a one- 
dimensional array ahgned along the flow dlrecUon An array with spheres of different sizes has also been 
studied The interaction among these spheres ~s a salient feature of the analys~s The Nav~er-Stokes 
equations, m pressure-velocity form, and the energy equation have been solved numerically by an .teratwe 
fimte-dlfference method m an embedded, body-fitted gnd A range of Reynolds numbers from 5 to 100 
has been investigated for two sphere spacings_ The temperature dJstnbut]on around the sphere array, as 
well as the drag coefficient and Nusselt number around the sphere surfaces have been calculated The 

results show good agreement w~th the numerical and experimental results m the hterature 

INTRODUCTION 

FUEL DROPLET combustion has recetved considerable 
attention in recent years Most  theoretical work has 
focused on the combustton of  a smgle, isolated droplet 
or on the group combustton behavior of  sprays It has 
been recognized, however, that m any spray com- 
bustion process, droplet-droplet  interactions reduce 
the gasification rate of  partictpatmg droplets. Hence 
~t is necessary to gam a better understanding of  these 
phenomena to improve our ability to predict the com- 
bustton behavtor of  fuel sprays 

A few theoretical approaches, based on an assump- 
tton of  potential flow, have been proposed to model 
interacting droplet arrays For  two-droplet systems, 
bipolar coordinates were used by Umemura  et aL [I] 
to describe the interaction between droplet parrs. For  
various multt-droplet arrays, Labowsky [2] proposed 
a technique, based on the method of  images, to cal- 
culate the burning rate of  each individual droplet in 
an array All of  the above calculations were performed 
for droplet arrays burn.ng m a quiescent, oxtdizing 
atmosphere, i e_ for diffusion controlled transfer pro- 
cesses 

In a real combustor,  however, forced convection 
may dominate the transfer processes, and combustton 
condtttons may differ considerably from those in a 
qutescent environment Thus a diffuston-limtted 
analysts is inadequate and the convective effects need 
to be taken into account_ In parttcular, the effect of  
forced convection on droplet--droplet interactions 
depends both on the relative arrangement of  spheres 
m an array and on the orientation of  the array with 
respect to the flow d~rection 

Shuen [3] studied the combustion of  a planar drop- 
let array oriented normal to the approaching flow 
and concluded that the interaction decreases as the 

Reynolds number increases. In contrast, for arrays 
with droplets ahgned m tandem along the flow d.rec- 
tlon, Ammzadeh et al. [4], Chen and Tong [5], and 
Tal et al. [6, 7] found that the interaction increases as 
the Peclet number or Reynolds number mcreases. 

The linear droplet array, although an approxi- 
mation of  a dense spray system, provides a convenient 
system for the study of  some key factors dominating 
the spray combustion process, such as the effects of  
Reynolds number, droplet-droplet  spacing, and drop- 
let stze on the heat and mass transfer behavtor of  the 
parttctpant droplets In contrast to the single droplet 
case, which provides an upper hmtt for convective 
heat and mass transfer rates m the absence o fd rop le t -  
droplet interactions, a hnear array of  droplets ahgned 
with the flow allows for a maxtmum mteractton 
between droplets Thus the asymptottc behavior 
observed for downstream droplets will provtde a cor- 
responding lower hmtt for the heat and mass transfer 
rates. The behavtor for droplets in a real, dense spray 
should fall between these two ltmits An apprectatton 
of  thts lower hmit will allow tmproved, conservative 
engmeenng models of  the complex spray process to 
be developed 

Another  tmportant charactensuc of  real sprays is 
the droplet size dlstrtbutlon. Clearly, the interaction 
between two or more droplets of  dtfferent sizes needs 
to be described The stze dtfferences, however, are 
neglected m most exlsttng theoretical models because 
of  the increased geometric complexity. Umemura  et 
al [I] studied the combustton of  pairs of  droplets of  
dtfferent sizes m a qutescent environment and con- 
cluded that, for any separation of  the two droplets, 
the smaller droplet ts affected by the interactton to a 
greater degree than the larger droplet 

In the present analysis, one-dlmenstonal sphere 
arrays similar to those treated by Chert and Tong [5] 
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coefficient in the general finite- 
difference equations 
total drag coeffÉcient 
friction drag coefficient 
pressure drag coefficient 
heat capacity 
convective term normal to grid cell 
boundary 
non-dimensional enthalpy 
Jacobian of  transformation 
thermal conductivity 
distance between the centers of  two 
spheres 
Nusselt number 
non-dimensional pressure 
Pec[et number 
Prandtl number 
radius of  droplets 
Reynolds number 
source term in the finite-difference 
equation for general variables q~ 
non-dimensional temperature 
non-dimensional x and y component  of  
velocities 
non-dimensional r and 0 component  of  
velocities in spherical coordinates 
axial and radial coordinates 

Greek symbols 
~, fl, 7 coordinate transformation parameter 

non-dimensional natural coordinates 

NOMENCLATURE 

F 

6~, on 

effective diffuslvlty for general 
variable 4) 
finite-difference mesh spacing in ~- and 
q-direction in the transformed plane 
cell boundary sizes in ~- and t l- 
directions in the transformed plane 
angle from stagnation point 
non-dimensional VlSCOSlt~ 
non-dimensional density 
surface shear stress 
general variable 

Superscripts 
averaged quantity 
dimensional quahty 

u u component  
z, l, component  

Subscripts 
e,w, n, s control volume faces surrounding 

point p 
E, W, N, S neighboring points surrounding 

point p 
film condition 
radial coordinate in spherical geometry 
sphere surface 
angular coordinate in spherical 
geometry 
angle around the symmetric axis 
free stream value 

and Tal et al [6] are studied with the intention of  
providing additional insight into the spray combustion 
process, In order to isolate the effect of  inter-sphere 
spacing on the sphere-sphere interaction, the spheres 
are equally spaced although this restriction can be 
easily relaxed in the present computat ional  scheme_ 
Furthermore, since the analysis is formulated as a 
pseudo-steady process, the temporal variation of  
droplet spacing, owing to non-uniform droplet drag, 
is not taken into account 

A multlsphere cyhndrlcal cell. as shown in Fig 1, 
is used for the calculation domain, and an embedded 

U= 

i 

SIDE VIEW END VIEW 

FIG 1 Geometry of the multisphere cyhndrlcal cell 

grid, as shown in Fig 2, fills the interior of  the cell. 
The embedded grid used here ehmlnates both an mac- 
curacy and numerical complications introduced by 
the grid used by Tal et al [6] and Chen and Tong [5] 
For  example, around the sphere surface, a spherical 
grid is used m the embedded grid and the size of  the 
grid around the sphere surface can be adjusted to a 
very fine degree without increasing the number of  
nodes. This not only can provide a more accurate 
evaluation of  the Nusselt number on the sphere 
surface, but also helps to resolve any steep tem- 
perature gradients occurring in the vicinity of  the 
droplet surface, this feature is especially attractive 
in droplet combustion studies_ Another  advantage, 
although not so obvious in this analysis, is important  
in the study of  transient droplet evaporation,  where 
the droplet shrinks as time progresses. At each time 
step, the entire domain used m refs_ [5, 6] needs to be 
regndded. In the embedded gnd used here however, 
only the spherical grid needs to be regndded, and this 
is indeed relatively easier and more economical 
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FIG 2 Embedded gnd for the present numerical stud~ 

The Navler-Stokes  equatmns and the energy equa- 
tmn are solved numencally by an ~teratlve, finite- 
difference method To better simulate the flow around 
spheres, variable gas propertms are also mcluded 
in the analysis_ Numenca l  results are obtained for 
Reynolds numbers from 5 to 100 and two sphere 
spacings, 4 and 8 sphere radn, respecttvely. While 
there ~s no theoretmal hmlt to the number of  tandem 
spheres that can be included in this model, our present 
constraints of  computer  t~me and storage have pre- 
cluded the study of  more than three spheres 

MATHEMATICAL FORMULATION 

The hnear sphere array in the present analysts is 
confined m a multtsphere cylindrical cell. as shown 
m Ftg. I For  ax~symmetnc flow, the conservatmn 
equatmns for mass, momentum,  and energy m cyl- 
indrical coordinates reduce to those given below 

The continuity equation 

? ?' 
~.~ (ypu) + ~ (ypv) = 0  (1) 

The momentum equations 
x-Component  

?' ?' Op 
7-  O'puu) + : -  ()'put,) = CX or  --Y 

2 [ & .  

3'-Component 

ca ~3p 
~-cx ()'put_') + OI-- (ypvt') = -- y ~), 

~(y~, ) ]  
+ Oy J (2) 

+ ~ ~,  (3) 

where 

z,~ = 2#(6u/cax) - 3#[(1/y) ?'(yv)/Oy + du/~x] (4) 

~, = ~,~ = ~[&/~y + &/&] (5) 

zoo = 2/a(v/y)- ~#[(l/y) dO'v)/g)'+Ou/dx] (6) 

L, = 2U(&/?'v)  - 3 g [ ( l / y )  d(yr)/?)' + Ou/~x] (7) 

The energy equation 
Neglecting the compression work and viscous dls- 

sipatmn, the energy equation can be written as 

( vp~h) + 7 -  (ypt,h) 
cy 

=Pe~ & Yk~xj  ~ y k ~  . (8) 

With constant heat capacity, the enthalpy h is related 
to temperature T as h = Cp T and the energy equation 
can be rewntten as 

~x ()'puT) + : -  O'pvT) oy 

2 [?'  ( k OT'~ ?' [" k O T ) ]  
-Pe. Oy/J (9) 

The following dimensionless variables have been used 
for the above equations 

u = u'/u'~, v = v'/u'~, T =  T ' /T '~  

p = p'/p'~ u'~, h = h'/c'po~ T'~, p = p'/p'~ 

Iz = #'/#'~, C. = C'p/C'p~, k = k ' / k "  

x = x ' / R ' ,  y = y ' / R ' ,  R e ~  = 2 R ' u ' p ~ / # ' ~  

Pr~ = C'p~#'~/k'~, Pe~ = Re~ Pr~_ 
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The boundary conditions for multlsphere cyhndncal 
cell are 

(a) at the inlet 

u = l ,  r = 0 ,  T = I ;  

(b) on the cyhndncal  envelope 

u =  I. Ou/~)' = O. r = O. T =  1; 

(c) on the sphere surface 

u = O .  v = O .  T = T , .  

(d) along the axis of  symmetry 

Ou/Oy = O, v = 0 ,  OT/Oy = O, 

(e) at the outlet 

u is adjusted to satisfy global mass conservation 
relation (see Apppendix),  t" = O. OT/Ox = O. 

The heat transfer to the sphere can be expressed in 
terms of  the local or average Nusselt numbers 

Nu~ = 2R ' (k~ /k '~ ) ( t~T ' /Or ' ) j (T '~  - T~) (10) 

N u =  1/2 N u ~ s l n O d O  (11) 
0 

where r' and 0 are radial and angular coordinates in 
spherical geometry The drag force acting on the 
sphere can be expressed in terms of  the drag 
coefficients 

810 Car = R ~ -  ~ (%0 sin 0 -  ~rr COS 0) sin 0 d0 (12) 

where 

a/vo'~ l&,rl 
z , . = u  r t ? - ~ t r ) + r ~ ]  (13) 

&'. , F I ? _ _ 1  ~ (vosInO) 1 
r sin 0 _1 

(14) 

,% = u COS O+v s i n  0 ( 1 5 )  

v, = u sin 0 + v  cos 0 (16) 

= 2 f o  r Cdr p. sin 20 dO, (17) 

The total drag is then 

Cd = Cdr+ Cdp (18) 

In order to compare the present results with pre- 
wously published data, a modified set of  dimen- 
sionless groups, m which the fluid properties are 
evaluated at the film temperature, are defined as 

Nut  = 2R ' (kUk~) (OT ' /ar ' ) . / (T '~  - T;)  (19) 

Re, = 2R'u;~p'~ /p'r (20) 

Prr = C'p#'f/k~ (21) 

where the subscript f refers to the film temperature 
defined as 

T'f = (T~ + T'. )/2 (22) 

Transformatzon o f  the bastc equat ions  
The set of  conservat, on equations can be written in 

a more general form for a general dependent variable 

a s  

+ : -  Fv +S~ (23) QI' " ' - 

For the axial velocity component  (u) m the momen-  
tum equation 

2/~ 
~b=u, 1 - -  

R e : r  ' 

and S = - ( ? p / d x + v i s c o u s  terms (24) 

for the radial velocity component  (v) 

2p 
~ = v , F -  

R e ~  " 

and S = - O p / ~ y + v l s c o u s  terms (25) 

and for the energy equation 

2k 
4 ) = T .  F - p e ~ C p .  and S = 0  (26) 

When new independent vanables ~ and q are intro- 
duced, the partial derivatives of  the function (p are 
transformed according to 

Ca~ = (y~ca~-y~O/J. Ca, = (-x.ca~+xd.O/J 
(27) 

where J is the Jacoblan of  the transformation given by 
J = x D , . - x . y  ¢ By defining the following functions 

G i = u) ' . - -  ex ,  (28a) 

G~_ = vx  - u y ¢  (28b) 

ot=x~+y~. [t=&x.+yo,.. Y=x~+Y~ (29) 

one can reduce equation (23) to 

O 0 
O~ (pyG . Ca) + ~q (pyG20)  = ~ [(Fy/J)(ctCa~ - flCa~)] 

+ Or/[(Fy/J)(yCa.-/JCa¢)] + SyJ (30) 

Integration over the control volume and application 
of  Green's  theorem allows equation (30) to be written 
in integral form as 
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FIG 3(a)_ Fmne-dlfference grid representation in the physi- 
cal plane 
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FIG 3(b) Finite-difference grad representation in the trans- 

formed plane 

f n ( p y G l ~  drl-pyG2dp d~) = Jn [(F_v/J)(=~b¢- fl~b.)dq 
( 

-(ry/s)(,e~.-~e:¢)d¢l+ffSyJdCdn. (31) 

With the notation shown in Fig. 3 for a typical gnd 
node p enclosed m its cell and surrounded by its 
neighboring nodes N, S, E, and W, the finite-difference 
approximation of  equation (31) over the cell can be 
written as 

(pya  ,dpArl)~ + (pyG2dpA¢) 7 = [(Fy/J)(~4)¢ -M~dAq]~ 
+ [(ry/J)(~4~ - fl4~¢)A¢]~" + SyJA~Arl_ (32) 

If  the power law scheme [8] is used to evaluate the 
strength of  convection and dtffusion on the cell 
boundary, equation (32) can be recast as a relation 
between the value of  (;b at node p and its values at the 
neighboring nodes, Le 

Ao~br = Ae~E + Aw~bw + ANON + As~s + SyJA,~Arl 

- [(ry/J)flep,Arl]~ + [(Fy/J)St~¢A~]~ (33) 

where Ap = A E + A w + A N + A s  and the coefficients A, 

(I = E. W. N, S) mvolve the convective flow par- 
ameters such as mass fluxes, areas, viscosities, 
diffusion coeffÉcients, and the like. The details can be 
found m ref [8]_ The terms within the brackets in 
equation (33) result from the non-orthogonal  gnd 
system They can be evaluated through the fimte- 
difference approximation 

[(F.v/J)fl~b~Aq]c 

= 1/4[(Fy/J)flArl]o(dpNF--dpsF+dp..--gps) (34) 

Pressure equation 
In the momentum equations, the pressure remains 

unknown_ However,  an independent equation for 
pressure can be set up by combining the continuity 
and momentum equattons The details of  the pro- 
cedure will be described later in this section 

The disadvantage of  using the pressure/velocxty 
formulation, as compared to the stream function/ 
vortlctty formulation, is that checkerboard pressure 
and velocity fields may result [8] Such unreahsttc 
fields are linked to the use of  central difference equa- 
tions to express the first-order denvattves of  pressure 
m the momentum equations and veloctty m the con- 
tmutty equation_ The most common way to avoid 
these checkerboard fields lS to use a staggered grid [8] 
For  a curvilinear grad. however, a staggered grid can 
be overwhelmingly complicated_ 

There are a num ber of  numerical schemes available. 
such as S IMPLE (Semi Imphctt Method for Pressure 
Linked Equations [9]), S I M P L E R  (SIMPLE-Revised 
[10]). or S IMPLEM (SIMPLE-Modif ied [10]). that 
can be used to solve the equattons for pressure and 
momentum These numerical schemes can avoid 
checkerboard pressure and velocity fields without 
adopting a staggered grid In the present analysis, 
S IMPLEM ts adopted because of  its good con- 
vergence characteristics, and the pressure equation is 
formulated accordingly The procedure and the strat- 
egy of  S IMPLEM will be dxscussed briefly in the next 
section The pressure equation ts derived by writing 
the momentum equations in the follow,ng form.  

u = u*+B, ( ) ' t3P / t3~)+Cl (ydP/Or l )  (35) 

i, = t '*+B._(y ¢3P/t3~)+c.o '  OP/t3rl) (36) 

where 

u*= ~ a"u+S", v*= ~ a'v+S" 
EWNS EWNS 

B. = --)',Ag.Arl/A' ~, C) = )'¢AI~Arl/A~, 

B ,  - x ,A~Aq/Ap,  C2 = -xeA~Aq/A 'p  

A " =  A'//Ag, A' = A',/A' v 

t =  E , W , N , S  (37) 

and S" and S'  are residues after the pressure gra&ent 
terms have been extracted 

Integration of  the continuity equation (equation 
(1)) over the control volume yields 
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(pG ,),Aq)~ - (pG o'Ar/),. + (pG 2yAc~). 

- (pG._I,A~). = 0 (38) 

With the above definitions o f u  and v. G. and G~ can 
be written as follows 

G, = G* + (B~v~ - B_~ v,z)( I' (P:?~) 

+ ( C , y , , -  C._x , ) (y  gP/g~n) (39a) 

Gz = G * + ( C . x - - C l y : ) O ' ~ P / ? q )  

+ ( B z x  - B , I ' ~ ) ( ) ' O P / ? ~ )  (39b) 

where 

G* = u ' y , , -  v ' x , ,  (40a) 

G* = t * xz - u* y~. (40b) 

With the substitution of  G, and G~ in the continuity 
equation (equation (38)), the pressure equation can 
be written as the algebraic equation 

appp = a E p E + a w P w + a N p N + a s P s + b  (41) 

where 

av = (py2 B)~(Aq/6~)e 

aw = - (py2B). .  (Aq/6~).~ 

as  = - ( p y 2 C ) . ( A ~ / 6 q ) °  

as = - (py ' -C) . (A~/6q)~ 

£/p = ~/F ~-aN-]-(dw-{-¢/S 

b = (pG*yAfl),~ - (pG*),Af l)~+ (pG*yA~)~ 

-- ( p G * v A 4 ) .  + b.o 

B = Bi ~y l~- -B,_  ~xl'~q 

C = Cz ? x / ? ~ -  C, ?y/g~ (42) 

In the above equation b.o ~s the contribution due to 
nonorthogonahty,  It is expressed as 

b... = [ (C ,y , , -  C.x.)(_~ -" ? P / ~ t ) L  

- [ (C ,y , , -  C_.x.)Iy -~ 8P/~q)]~ 

+ [(B_~ v - BO ~)(_l '-~ ? P / ~ ) ] ,  

- [ ( B . _ v  - B , y : ) ( y ~  OP/~()] .  (43) 

Solut ion procedure  

The numerical scheme S1MPLEM was used to solve 
the momentum and continuity equations The pro- 
cedure of  S1MPLEM. together with the solution pro- 
cedure of  solving the coupled energy equation, can be 
summarized as follows 

(I) Start with assumed values for the fields u, v, P 

and T 
(2) Calculate the coefficients of  the momentum 

equations and u* and r* Use these values to find G* 
and G* at grid nodes Interpolate linearly to find G* 
and G* at the control volume faces 

(3) Calculate the coeffic|ents of  the pressure equa- 
non and solve ~t to obtain a new pressure field 

(4) Update  G, and G._ (equation (39)) at the Inter- 
faces using the new pressure field, and using I - A~ or 
1 - A ~ / c e n t e r e d  difference scheme for p 

(5) Use the updated G~ and G. to recalculate the 
coefficients of  the momentum equation and use the 
new pressure field (obtained in step 2) to calculate the 
pressure gradient in the momentum equation with 
a 2 - A ~  or 2 - A q  centered difference scheme The 
momentum equation can then be solved to obtain a 
new velocity field. Le new u and 

(6) With the new velocity field, calculate the 
coefficients of  the energy equation and solve it to 
obtain a new temperature field 

(7) Use the calculated u. v. P and T as the new 
guess, return to step 2. and repeat until a converged 
solution is achieved 

The purpose of  using a centered 1--A~ or l - A q  
pressure difference scheme in step 4 is to detect any 
oscillation occurring In the flov~ field, and to suppress 
it immediately with the interface velocity The recal- 
culation of  the coefficients of  the momentum equation 
in step 5. after updating the interface velocities, IS to 
ensure that velocmes used in the coefficients and the 
pressure field satisfy the same continuity equatmn. A 
more detailed discussion of  the S IMPLEM pro- 
cedures can be found in re['_ [10] A standard trl- 
diagonal matrix algorithm (TDMA)  is used to solve 
for the pressure equatmn in step 2, the velooty  equa- 
tion in step 5, and the temperature equation in step 6 
The details of  T D M A  can be found in ref [8] 

The gr id  s y s t em  

The grid system used for the present analysis, as 
shown In Fig 2. IS an embedded grid_ Close to the 
sphere, a spherical grid is retained The remaining 
flow region is covered with a curvillnear mesh. which 
is generated by the method developed by Knight [1 I] 
This technique consists of  solving Polsson's equation 
and performing an intermediate and final trans- 
formation The generated grid can be either orthog- 
onal (with parual  control of  the mesh spacing) or 
nearly orthogonal  (with full control of  mesh spacing) 
In this work, we used the first of  these options. Since 
orthogonallty is not required for the curvlhnear mesh. 
however, any other appropriate technique can be used 
to generate the mesh Wnh this embedded grid, the 
computational  domain can then be as shown m F~g 
4(a) Figures 4(b) and (c) show the transformed cal- 
culanon domain and the boundaries (meshed area) 
for the curvlhnear mesh and spherical mesh, respec- 
tively The calculations are carried out In each of  the 
two domains at each iteration, first in the curvlhnear 
mesh and then in the spherical mesh It can be seen 
from Fig 4(b) that one row of the interior nodes in 
the spherical mesh serves as a boundary condition for 
the calculation in the curvdlnear mesh_ Figure 4(c) 
indicates how the intersection between the curvlhnear 
mesh and the spherical mesh serves as a boundary 
condmon when the calculahon ,s performed In the 
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FIG 4(a) The computational plane for the entire embedded 
grid (Fig 2) 

FIG 4(b) The computational plane for a curvdmear mesh 
(meshed area) 

FIG 4(c) 

, i  I 

The computational plane for a spherical mesh 
(meshed area) 

spherical mesh. It should be mentioned that the slab 
comers ]n the transformed domain are points which 
require special treatment. In this study the values at 
the special points were obtained by hnear interp- 
olation between the neighboring nodes along the axis 
of  symmetry in the physical domain ;  a linear dis- 
tnbutlon of  partial denvatwes in the neighborhood 
of  a specml point was assumed Other techniques for 
treating the spec]al point can be found m ref. [12]. 

RESULTS A N D  DISCUSSION 

8 
2- 

1E+O0- 
9. 
8 

Calculations were first carned out for a single, iso- 
lated sphere immersed m flowing am Experimental 
and numerical data for this case are abundant  [13]. 
For  these calculations, all the data, as well as the ~i 
transport coefficients and thermodynamic properties 6. 
are taken directly from the work of  Renks]zbulut and 5. 
Yuen [13] m order to compare the present results with ~ _ 4. 
their results_ The sphere temperature, air temperature, ~- 
and Prandtl number (based on free stream properties) ~ ~ 

were taken as 353 K, 800 K, and 0.689, respectwely 
The transport coefficients for air were approximated 2. 
by /1= T °67 and k = T  °8 '  The air denszty vaned 
with temperature as p = I / T  and the heat capacity 
was taken as Cp = 1. The envelope of  the multlsphere 
cylindrical cell was set at 12 radii away from the axis ~r+oo 

of symmetry to ensure zero gradients on the envelope 
The ]nlet and outlet of  the cell were kept at a d~stance 
of  about  8 radn from the spheres 

• I=III=N! $i'u=~ 

; R r ~ l ~  . . . .  ( , , ,  

• E r  (iJJ) 

• • • n i ~  

i i r : r ! i : i r : r i 
7 1E+O1 2 J 4 5 6 7 1E+02 

Re 
e 

FiG 5 Drag coefficient for an isolated solid sphere 

The cntenon of  convergence between two successive 
iterations was originally set at 10 -4 m order to con- 
serve computer  time. However, it was found that the 
resulting dependence of  average Nusselt number on 
Reynolds number was not smooth and tended to osell- 
late_ This same phenomenon has also been reported 
by Armnzadeh et al. [4]. Therefore, a criterion o f  
convergence of  10- ~ was used and good results were 
obtained A relaxation factor of  0.8 was used for the 
calculation at Reynolds numbers below 50, wh,le for 
Reynolds numbers greater than 50, a relaxation factor 
of  0.6 was used 

The calculated drag coefficients and average Nusselt 
numbers of  the Isolated sohd sphere are compared 
with the numerical results of  Renks~zbulut and Yuen 
[13] m Figs 5 and 6. Note that here the Reynolds 
number and the average Nusselt number are evaluated 
at the film temperature The agreement between the 
present results and the results of  ref [13] is very good. 
Since the numerical results in ref. [13] correlate with 
a wide range of  experimental data, the present results 
are also m good agreement This favorable com- 
parison validates the present analysis and the numeri- 
cal procedure, and.)usuries extending the calculations 
to a mulusphere system 

Numerical solutions have been obtained for three- 
sphere arrays wlth sphere spacings of  4 and 8 radii, 

• PR[$[NT S'nJDY • /  

- -  CORRECTION or KF 03) 

• wtr (13) 

| i i i r i i i i i ! i i ! 
6 7 1E+01 2 3 4 5 6 7 1E+02 

Re 
r 

FIG 6 Numerical heat transfer data for an isolated sohd 
sphere 
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FIG 7(a) Velocity field In the entire cyhndrlcal cell for a three-sphere array at Re = 100 and L,R = 4 0 
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FIG 7(b) Velocity field around the first and the second spheres 
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FIG 7(c) Velooty field around the second and the third spheres 

and an array with spheres of  three different sizes_ The  
calculat ions were performed in a mesh consist ing of  a 
150 x 42 grid plus three spherical meshes with 21 x 11 
grids (see Fig 2) and the CPU time requirement  is 
typically abou t  30 mln in a Float ing Point  System 
(FPS) 264 to reach converged solutions for most  cases 
discussed below F o r  a sphere array with spacing of  4 
radii, the flow field and the isotherm pa t te rn  at  
Re = 100 can be seen in Figs 7(a)-(c)  and 8(a). In 
Figs 7(b) and  (c), it can be seen that  the second and  
third spheres clearly interact with the wake of  the first 
and second spheres, respectively 

In Fig. 8(a), very similar isotherm pat terns  can be 
observed among  these three spheres, however,  these 
pat terns  are not  periodic. Figure 8(b) shows the iso- 
therms of  the three-droplet  ar ray with spacing of  8 

radu at Re  = 100 As can be seen in Fig 8(b), a per- 
iodlc behavior  emerges for the isotherm pat tern  of  the 
second and third sphere This periodic behavior  was 
not  observed In Tal et a l ' s  work [6], and  the dis- 
crepancy might  be due to the shor ter  spacings (3 and  
6 radii) used in their study For  compar ison,  the iso- 
therms for the array with three different sizes of  
spheres at Re  = 50 are also presented here and  shown 

in Fig 8(c) 
Figures 9(a) and (b) show the local Nussel t  n u m b e r  

for each of  three spheres with a spacing of  4 and 8 
radu at Reynolds  numbers  of 100. It ~s interest ing to 
note in Fig_ 9(a) that  the wake behind the spheres at 
Re  = 100 tends to increase the Nussel t  number  in the 
region after the polar  angle of  140 (measured f rom the 
f ront  s tagnat ion point)  The local Nussel t  numbers  of 
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FIG 8(a) Isotherm pattern for three spheres at Re = 100 and L , R  = 4 0 
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FIG 8(b) Isotherm pattern for three spheres at Re = 100 and L / R  = 8 0 
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FIG 8(c) Isotherm pattern for three d,fferent-slze spheres at Re = 50 and L / R  = 4 0 
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9(a) Local Nusselt number vs angle from the front 
stagnatmn point at Re  = 100 and L / R  = 4 0 

q 

10 

,= 

o '  
2 

q 210 410 610 BIo 1 ~0 1 ~I0 I '~0 ' 60 1 80 
ANGLE/degrees 

FIG 9(b) Local Nusselt number vs angle from the front 
stagnation point at Re = 100 and L / R  = 8 0 

the first sphere m the array are shghtly greater  than 
those for an tsolated sphere in the same region. In Fig_ 
9(b), however,  the local Nussel t  numbers  a r o u n d  the 
first sphere are the same as tha t  of  a single, tsolated 

sphere This indicates that  the heat t ransfer  of  the 
first sphere ts not  mfluenced by the presence of  the 
downs t ream spheres Compar t son  of  Figs. 9(a) and 
(b) shows that  the local Nusselt  numbers  for the 
second and third spheres, at larger spacing, are higher 
than those for the same spheres at  smaller spacing, 
whtch shows the sphere-sphere  interact ion decreases 
as the spacing between the spheres mcreases 

The result of  the overall average Nusselt  n u m b e r  
and total drag coefficient at a sphere spacing of  4 and 
8 radii as a function of  Reynolds number  are shown 
m Figs. 10 and I 1, respecttvely These results confirm 
the local var ta t lons  dtscussed above Parttcularly,  tt 
can be observed that  when the sphere spacing is 
increased, the difference of  the average Nussel t  num- 
ber and the total  drag coeffictent between the first 
sphere and the rest of  the spheres ts reduced, i e_ the 
interact ion ts reduced The value of  the Nusselt  num- 
ber and total drag coeffioent  ts htgher for the first 
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FIG 10(a) The average Nusselt number vs Reynolds number 
at L / R  = 4_0 
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FIG 10(b) The average Nusselt number vs Reynolds number 
at L / R  = 8 0 

sphere, and  the values for the second and  the third 
spheres are nearly the same This agrees with the results 
reported by Chert and  Tong  [5] and  Tal  et  a l  [6] 

The local Nussel t  numbers  for three spheres with 
different sizes and  equal  slze at R e  = 50 are shown in 
Fxgs. 12 and  13, respectively. In F~g. 12, the radius 
of  the largest sphere ( thtrd  sphere) is used as the 
charactertst lc  length for the local Nussel t  n u m b e r  and 
Reynolds number_ It can be observed that  the smallest 
sphere (first sphere) has the highest  heat  t ransfer  rate 
on the sphere surface Compar i son  between Figs. 12 
and 13 indicates that  the small ups t ream spheres gtve 
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FIG II(a) Total drag coefficLent vs Reynolds number at 
L/R  = 4 0  
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FIG l l(b) Total drag coefficient vs Reynolds number at 
LIB = 80 

1 c - ~-~ stcoNo sp~tnt tmz 

~J  R l=~  ~ THIflO SPH[RE (R3) 

Rt=O 6 (rach==~ 

ANGLE/degrees 

FIG t2 Local Nusseh number vs angle from the fronl 
stagnatmn point for three different-size spheres at Re = 50 
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FIG 13 Local Nusselt number vs angle from the front 
stagnation point for three equal-size spheres at Re = 50 and 

L/R  = 4 0 

less influence on the heat  t ransfer  of  the downs t ream 
spheres 

C O N C L U S I O N S  

A numerical  scheme, S I M P L E M ,  and an em- 
bedded, body fitted grid are used to obtain the 
solut ton of  heat  and m o m e n t u m  transfer  m one- 
dimensional  sphere arrays for Reynolds numbers  
from 5 to 100. The following conclusions can be 
drawn from thts analysis 

(1) The present numerical  scheme has been apphed 
to a single, isolated sphere and the results show good 
agreement  with the avatlable numerical  results and 
experimental  da ta  

(2) The calculat ions m the present  analysis are 
based on variable gas propert ies  Since most  practical 
heat t ransfer  problems involve large proper ty  vari- 
ations, the present study appears  to be more  relevant  
than those where cons tan t  properUes are assumed 

(3) The interact ion between equal-size spheres is 
found to decrease as the sphere spacing increases For  
spheres with different sizes, it is also found that  a small 
sphere tends to have a higher  heat  t ransfer  rate and 
less influence on the heat  t ransfer  of  the downst ream 
spheres 
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(4) T h e  v e l o c i t y - p r e s s u r e  f o r m  used  for  the  m o m e n -  

t u m  e q u a t i o n  in the  p r e s e n t  s t u d y  cou ld  be m o r e  easi ly 

e x t e n d e d  to t h r e e - d i m e n s i o n a l  p r o b l e m s  t h a n  the 

s t r e a m  f u n c t l o n / v o r t l c l t y  f o r m  used  m m o s t  o t h e r  

related a n a l y s e s  r e p o r t e d  in the  l i te ra ture .  

(5) F o r  l inear  d rop l e t  a r r a y s  u n d e r g o i n g  c o m b u s -  

t ion,  the  p r e s e n t  h e a t  t r a n s f e r  ana lys t s ,  w h e n  coup l ed  

wi th  the  species  c o n s e r v a t i o n  e q u a t i o n s ,  c an  be used  

to ca lcu la te  the b u r n m g  ra te  o f  l inear  d rop l e t  arrays_ 

T h i s  ana lys t s  is c u r r e n t l y  in p rog re s s  a n d  the  resu l t s  

will be r epo r t ed  in f u t u r e  c o m m u m c a t l o n s  
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APPENDIX 

The velocity component  u at the outlet of  the cylindrical 
cell is adjusted to satisfy mass conservation at each iteration 
as follows 

The total mass flow rate (based on unit radian) into the 
cyhndncal  cell is calculated at the cell inlet as 

Q =  ~ p , u ~ A Y ,  Y, 
/ - - I  

An estimate of  the total outlet flow is calculated using the 
u component  of  velocity one node upstream of the ex,t as 

~LL = p, u, ~AY, }' j 
j - I  

The u component  of  velocity at the exit of  the cylindrical 
cell is then adjusted by 

• . ~ , - ' (Q IO_ )  
where / is the index of the node in the ),-direction, M the 
largest number  of  I, A Y, Y, the flow area associated with 
node I. L the index of  outlet. L -  I the index of  the interior 
nodes one node upstream from the outlet, and Q({~) the 
actual (estimated) mass flow rate 

APPLICATION DE LA G R I L L E  NOYEE A LA RESOLUTION DU T R A N S F E R T  DE 
C H A L E U R  ET DE Q U A N T I T E  DE M O U V E M E N T  POUR DES SPHERES EN 

A R R A N G E M E N T  LINEAIRE 

R6sum6--L'object lf  de cette 6tude est de predlre le transfert therm~que par convection forc6e pour des 
sph6res duns un arrangement monodlmenslonnei  align,; duns la direction de l',;'coulement Un arrangement 
avec des sph6res de dlam6tres diff6rents est aussl 6tudlg L'lnteractlon de ces spheres est le falt marquant  
de l 'analyse Les 6quatlons de Navler-Stokes, sous la forme presslon-vltesse et I'~'quatlon d'6nergle sont 
r6solues num6rlquement par une m,~thode tt6ratwe aux dlff6rences times duns une grille noy6e_ On ,~tudle 
le domame de nombre de Reynolds de 5 a 100 pour deux espacements des spheres La dlstnbutton de 
temperature autour  des spheres et le coefficient de tram6e sont calcules alns, que le nombre de Nusselt 
autour  des sph6res Les r6sultats montrent  un ban accord avec ceux num~nques  el exp~rlmentaux de la 

htt&rature 
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A N W E N D U N G  EINES FESTEN GITTERS Z U R  L O S U N G  DES W,~RME- U N D  
1MPULSTRANSPORTS F U R  K U G E L N  IN EINEM LINEAREN FELD 

Zusammenfassung--Z~el dLeser Untersuchung ]st dne Berechnung des Warmetransports  m erzwungener 
Stromung tn emem Feld yon Kugeln, welche hmterelnander angeordnet stud Neben gle~chen Kugeln 
wurde auch em Feld m~t Kugeln unterschtedhcher Grol3e betrachtet Die gegense]tlge Beemflussung der 
Kugeln 1st em wesenthcher Gestchtspukt der Untersuchung DLe Nawer-Stokes-Gle~chungen (nn Druck- 
Geschwmd~gkextsform) und dte Energ~egle]chung werden numer]sch mnt Hflfe enner tteratnven Fmtte- 
D]fferenzen-Methode gelost Dabe] ,~trd em feststehendes, an den Kugeln zentnertes Gltter benutzt D~e 
Untersuchungen werden fur zwe] versch~edene Kugelabstande und Reynolds-Zahlen trn Bere~ch yon 5 100 
durchgefuhrt Es wtrd sowohl die Temperaturvertedung tn der Umgebung  des Kugelfeldes als auch der 
Wlderstandsbet~ert  und die Nusselt-Zahlen an den Kugeloberflachen berechnet Dte Ergebnlsse zexgen 

eme gute Uberelns t tmmung mlt numerlschen und expernmentellen Ergebnlssen aus der L~teratur 

H P H M E H E H H E  METOJI,A C E T O K  ~Jl~l PEIIlEHHSI 3 A ~ q  r l E P E H O C A  TEFIJIA H 
HMI ' I~J IbCA B JIHHEI~IHOI~I U E F I O q K E  CCbEP 

ANUOl'llIMi----L~ITldO rlaHHOl'O HCC.TIe,/IOBaI.[HII III~'U~L'TCA npc~cgL~N.He TCL'IAOIIL'DCHOCa B W ~ C H H O ~  
KOHI~II.I[IR[ B OJI, IIOM~[~HOfi Uenoqle  a ~ - p ,  pacnonoxeHmmU( D HanpasJletmH T~ICHlllI, PaccMaTpHeaexc~ 
T u x e  cny~afl uenoqxx ~ ~ pa~MepoB. Oco6em4oc~m a n a . ~ a  n.~SeTCs e3am4o.aeAcrHe 
Mex~y cdpepaMx YpaeueFm~ HaBbe-CTOgCa IJ g o o p ~ m a T a x  "cgopocrb a nae~exxe",  a ralgxe ypasHe- 
HHC coxpaHelma 311epl-m~ pelllalOTCa qHCJICEmO wrepalDlOlllihlM KOHeqHo--pa3HOCTHhIM MC"I'OJIOM ~Ic~Jie- 
~tyeTca ~ a n a ~ o a  3Elaqell]~i qucJza Pegmonhaca 5-100 n.qn neyx npoMexyrgon Mew~y c~pepaM~_ 
PaccqwrldsalOTCR pacnpe~te~etme TeMnepaTypta aogpyr ttenoqltH cdpep, a l"alt-~e gO3~ltlDlettT conpo- 
Tne~enHa x qxc.no Hycce~hTa Bogpyr ~ no~px~ocTeA, l ' lonyqemt~e pe3yJlbTaT~a xopomo cor~a- 

CylOTC~I C xMe~oIX~MHCX S JrirrepaType qHCJleHHhlMX X 3gcnepKMetrra.qbHhtM~ ~IaHHIdIMH 


