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Abstract—The objective of this study 1s to predict the forced convection heat transfer [or spheres 1n a one-
dimensional array aligned along the flow direcion An array with spheres of different sizes has also been
studied The interaction among these spheres 1s a salient feature of the analysis The Navier-Stokes
equations, in pressure—velocity form, and the energy equation have been solved numencally by an iterative
finite-difference method 1 an embedded, body-fitted gnd A range of Reynolds numbers from 5 to 100
has been investigated for two sphere spacings. The temperature distnbution around the sphere array, as
well as the drag coefficient and Nusselt number around the sphere surfaces have been calculated The
results show good agreement with the numencal and expenimental results in the hiterature

INTRODUCTION

FUEL DROPLET combustion has received considerable
attention 1n recent years Most theoretical work has
focused on the combustion of a single, 1solated droplet
or on the group combustion behavior of sprays It has
been recognized, however, that in any spray com-
bustion process, droplet—droplet interactions reduce
the gasification rate of participating droplets. Hence
1t 15 necessary to gain a better understanding of these
phenomena to improve our ability to predict the com-
bustion behavior of fuel sprays

A few theoretical approaches, based on an assump-
tion of potential flow, have been proposed to model
interacting droplet arrays For two-droplet systems,
bipolar coordinates were used by Umemura e al. [1]
to describe the interaction between droplet patrs. For
various multi-droplet arrays, Labowsky [2] proposed
a technique, based on the method of images, to cal-
culate the burning rate of each individual droplet in
anarray Allof the above calculations were performed
for droplet arrays burning in a quiescent, oxidizing
atmosphere, 1 e. for diffusion controlled transfer pro-
cesses

In a real combustor, however, forced convection
may domunate the transfer processes, and combustion
conditions may differ considerably from those in a
quiescent environment Thus a diffusion-limited
analysis 1s 1nadequate and the convective effects need
to be taken into account. In particular, the effect of
forced convection on droplet—droplet interactions
depends both on the relative arrangement of spheres
in an array and on the orientation of the array with
respect to the flow direction

Shuen [3] studied the combustion of a planar drop-
let array oriented normal to the approaching flow
and concluded that the interaction decreases as the

Reynolds number increases. In contrast, for arrays
with droplets aligned 1n tandem along the flow direc-
tion, Aminzadeh et al. (4], Chen and Tong [5], and
Tal et al. [6, 7] found that the interaction increases as
the Peclet number or Reynolds number increases.

The linear droplet array, although an approxi-
mation of a dense spray system, provides a convenient
system for the study of some key factors dominating
the spray combustion process, such as the effects of
Reynolds number, droplet—droplet spacing, and drop-
let size on the heat and mass transfer behavior of the
participant droplets In contrast to the single droplet
case, which provides an upper hmit for convective
heat and mass transfer rates 1n the absence of droplet—
droplet interactions, a linear array of droplets aligned
with the flow allows for a maximum interaction
between droplets Thus the asymptotic behavior
observed for downstream droplets will provide a cor-
responding lower hmit for the heat and mass transfer
rates. The behavior for droplets 1n a real. dense spray
should fall between these two limits An appreciation
of this lower limit will allow improved. conservative
engineering models of the complex spray process to
be developed

Another important charactenistic of real sprays is
the droplet size distribution. Clearly, the interaction
between two or more droplets of different sizes needs
to be descnibed The size differences, however, are
neglected 1n most existing theoretical models because
of the increased geometric complexity. Umemura et
al [1] studied the combustion of pairs of droplets of
different sizes 1n a quiescent environment and con-
cluded that. for any separation of the two droplets,
the smaller droplet 1s affected by the interaction to a
greater degree than the larger droplet

In the present analysis, one-dimensional sphere
arrays similar to those treated by Chen and Tong [5]
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NOMENCLATURE
A coefficient in the general finite- r effective diffusivity for general
difference equations variable ¢
Cy total drag coefficient 0s.0n  finite-difference mesh spacing 1n - and
Car friction drag coeflicient n-direction 1n the transformed plane
p pressure drag coeflicient A&, Ay cell boundary sizes in &- and #-

Cy
G, heat capacity
G convective term normal to gnd cell

boundary

h non-dimensional enthalpy

J Jacobian of transformation

k thermal conductivity

L distance between the centers of two
spheres

Nu Nusselt number

p non-dimensional pressure

Pe Peclet number

Pr Prandtl number

R radus of droplets

Re Reynolds number

S source term 1n the finite-difference
equation for general vanables ¢

T non-dimensional temperature

u, v non-dimensional x and y component of
velocities

U, Uy non-dimensional r and 8 component of
velocities 1n sphencal coordinates

Xy axial and radial coordinates

Greek symbols
o, .7 coordinate transformation parameter
non-dimensional natural coordinates

directions 1n the transformed plane

0 angle from stagnation point

Jr; non-dimensional viscosity

P non-dimensional density

T surface shear stress

¢ general varnable

Superscripts

’ averaged quantity

’ dimensional quality

u # component

r v component

Subscripts

e,w,n,s control volume faces surrounding
point p

E,W,N,S neighboring pomnts surrounding
point p

f film condition

r radial coordinate in sphertcal geometry

s sphere surface

0 angular coordinate 1n sphencal
geometry

¢ angle around the symmetric axis

® free stream value

and Tal et al [6] are studied with the intention of
providing additional insight into the spray combustion
process. In order to 1solate the effect of inter-sphere
spacing on the sphere—sphere interaction, the spheres
are equally spaced although this restriction can be
easily relaxed in the present computational scheme.
Furthermore. since the analysis 1s formulated as a
pseudo-steady process, the temporal vanation of
droplet spacing, owing to non-uniform droplet drag,
1s not taken 1nto account

A mulusphere cyhndrical cell, as shown in Fig 1,
1s used for the calculation domain, and an embedded

SIDE VIEW END VIEW

FIG 1 Geometry of the mulusphere cylindrical cell

grid, as shown 1n Fig 2. fills the intenor of the cell.
The embedded grid used here eliminates both an 1nac-
curacy and numerical comphcations introduced by
the grid used by Tal e al [6] and Chen and Tong [5]
For example, around the sphere surface, a spherical
grid 1s used 1n the embedded grid and the size of the
grid around the sphere surface can be adjusted to a
very fine degree without increasing the number of
nodes. This not only can provide a more accurale
evaluation of the Nusselt number on the sphere
surface, but also helps to resolve any steep tem-
perature gradients occurring in the vicimity of the
droplet surface, this feature 1s especially attractive
in droplet combustion studies. Another advantage,
although not so obvious 1n this analysis, 1s important
n the study of transient droplet evaporation, where
the droplet shrinks as time progresses. At each time
step, the entire domain used 1n refs. [5, 6] needs to be
regndded. In the embedded gnd used here however,
only the spherical grid needs to be regndded, and this
1s indeed relatively easier and more economical
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Fi6 2 Embedded gnd for the present numerical study

The Navier—Stokes equations and the energy equa-
tion are solved numencally by an iterative, finite-
difference method To better simulate the flow around
spheres, variable gas properties are also included
in the analysis. Numencal results are obtained for
Reynolds numbers from 5 to 100 and two sphere
spacings, 4 and 8 sphere radu, respectively. While
there 1s no theoretical limit to the number of tandem
spheres that can be included in this model, our present
constraints of computer time and storage have pre-
cluded the study of more than three spheres

MATHEMATICAL FORMULATION

The lLinear sphere array in the present analysis 1s
confined 1n a mulusphere cylindrical cell, as shown
in Fig. 1 For axisymmetric flow, the conservation
equations for mass, momentum, and energy in cyl-
indrical coordinates reduce to those given below

The continuity equation

¢ ¢
ap )+ 5(,vpv) =0 0

The momentum equations
x-Component

- ~

¢ ¢ op
x () puu)+ & (ypuv) = —y i

2 ot  d(yr,)
+R_ex|:} x oy ] )

y-Component
é é ép
o pu) + = (yprv) = — Yoy

}
2 [ or, 201,
+Re1 l:} ox + dy “Tee| O

where

tyo = 2u(0ufx) — 3ul(1 /) ) By + dujex] (4)
Ty =1, = pldujdy +br/ex] (5)

Tos = 20(e/r) = Sul(1») @(0) (o +6ujéx] ()
7, = 2u(@/ér) - 2ul(1/p) () jer+duléx]  (7)

The energy equation
Neglecting the compression work and viscous dis-
sipation, the energy equation can be written as

2 h) e h
0x(.wu + 6},(};71 )

2 ¢ oT é oT

With constant heat capacity, the enthalpy 4 1s related
to temperature T as h = C,T and the energy equation
can be rewritten as

2 n é T
2 e +ay(-”” )

21 k oT 0 k oT 9
" Pe, | dx Y C, ox * oy ! C, oy ©

The (ollowing dimensionless variables have been used
for the above equations

u=uju,, v=0vm,, T=T|T,
p=pPlpus, h=FK|.To, p=plpe
p=lle, Co=CplCpa. k=K,
x=x'IR’, y=)|R, Re, =2Ru,p,[u,

Pro=CL us/k’s, Pe, =Re, Pr,
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The boundary conditions for multisphere cylindncal
cell are

(a) at the mlet

u=1, vr=0 T=1;

(b) on the cylindrical envelope

u=1, culdy=0. v=0 T=1;

(c) on the sphere surface
u=0, v=0, T=T,.

(d) along the axis of symmetry

r=0,

dujéy =0, oTjoy =0,

(e) at the outlet

u 1s adjusted to satisfy global mass conservation
relation (see Apppendix), v =0, 07/dx = 0.

The heat transfer to the sphere can be expressed 1n
terms of the local or average Nusselt numbers

Nu, = 2R (k/k, )T [6r) /(T = T)  (10)

T

Nu= 1/2j Nu,sin 0 d6 (11
0

where " and 8 are radial and angular coordinates 1n

sphenical geometry The drag force acting on the

sphere can be expressed mn terms of the drag

coefficients

8 ke
Cy = —J. (tes1n B—1,,cos B)sin df (12)
Rel 0

where
_ ¢ vy + 1 dr, 13
1:'"—#rﬁr r r 00 13)
e, ,|1é& , 1 @
T, =2p ar —1l1|:? 5(’ v+ " 6—0(06 sin 9):]
(14)
v, =ucos@+vsinf (15)
vy =usin @+vcosb (16)
Cdr=2'[ p.sin 260 dé. 17
0

The total drag 1s then

Co=Cy+Cyp (18)

In order to compare the present results with pre-
viously published data, a modified set of dimen-
sionless groups, in which the fluud properties are

evaluated at the film temperature, are defined as
Nue = 2R (ki [k)(0T [ér) /(T =T  (19)

Re, = 2R"u, p’, [u; (20)
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Pre = Chpifki 21
where the subscript f refers to the film temperature
defined as

Ti=(T+T,)12 (22)
Transformation of the basic equations

The set of conservation equations can be written 1n
a more general form for a general dependent vanable
as

A -~

¢ ¢ ¢ &
E(p)ucb) + 5(p.n¢) =% (I“J < >

cxX

. (r_v@>+s} (23)

oy oy

For the axial velocity component () 1n the momen-
tum equation

2
p=u I= R:, :
and S = —0Jp/0x+viscous terms (249)
for the radial velocity component (r)
2u
¢=r. T=pr.
and S = —Jdp/dy+ viscous terms (25)
and for the energy equation
=T TI= 2 . and §=0 (26)
Pe, C,

When new independent vanables ¢ and # are intro-
duced, the partial denvatives of the function ¢ are
transformed according to
¢x = (,qu’e __vf¢q)/1! d’! = (_xq¢f+x5¢q)/‘,
27

where J1s the Jacobian of the transformation given by
J = x:y,—x,¥. By defining the following functions

G, =uy,—rux, (28a)
G, =uvx —uy; (28b)
a=x;+y;, B=xex, vy, y=xityi (29)

one can reduce equation (23) to

0 [ ¢
&m@m+%wmm=émwmmrwm

]
+an [Ty )¢, — B+ Sy]  (30)

Integration over the control volume and application
of Green'’s theorem allows equation (30) to be written
mn integral form as



The application of an embedded gnd to the solution of heat and momentum transfer

Fi 3(a). Finite-difference grid representation 1n the physi-

cal plane
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FiG 3(b) Fimte-difference gnd representation in the trans-
formed plane

J; (pyG ¢ dn—pyG, ¢ df) = L [(Tv/))(ag;—B,)dn

— Ty ) (vd, —B¢;) d¢] +J.L SyJd&dn. (3D

With the notation shown n Fig. 3 for a typical gnd
node p enclosed 1n 1ts cell and surrounded by its
neighboring nodes N, S, E, and W, the fimite-difference
approximation of equation (31) over the cell can be
written as

(VG DAY, +(pyG,9AL)! = [(Ty/))(ad: — B, An).,
+[(Ty/ Ny, — BdIALL +SyJALAy.  (32)

If the power law scheme [8] 1s used to evaluate the
strength of convection and diffusion on the cell
boundary, equation (32) can be recast as a relation
between the value of ¢ at node p and its values at the
neighboring nodes, 1.¢

Ay, = Acde + Awdw + Andn + Ashs + SyJAEAn
=Ty ))Bo, AL, +[(Ty/ DB AL (33)
where A, = A+ Aw+ A+ As and the coefficients 4,
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(1=E, W, N, S) involve the convective flow par-
ameters such as mass fluxes, areas, wviscosites,
diffusion coefficients. and the like. The details can be
found in ref [8]. The terms within the brackets in
equation (33) result from the non-orthogonal gnd
system They can be evaluated through the finite-
difference approximation

(Tyi))Be,An].

= /4[(Ty/J)BAN](One — Pse + I —0s)  (34)

Pressure equation

In the momentum equations, the pressure remains
unknown. However, an independent equation for
pressure can be set up by combining the continuity
and momentum equations The details of the pro-
cedure will be described later 1n this section

The disadvantage of using the pressure/velocity
formulation, as compared to the stream function/
vorticity formulation, 1s that checkerboard pressure
and velocity fields may result [8) Such unrealistic
fields are linked to the use of central difference equa-
tions to express the first-order denvatives of pressure
1n the momentum equations and velocity 1n the con-
tinuity equation. The most common way to avoid
these checkerboard fields 1s to use a staggered gnd [8)
For a curvilinear gnd, however. a staggered gnd can
be overwhelmingly complicated.

There are a number of numerical schemes available,
such as SIMPLE (Sermi Implhicit Method for Pressure
Linked Equations [9]), SIMPLER (SIMPLE-Revised
[10]), or SIMPLEM (SIMPLE-Modified [10]), that
can be used to solve the equations for pressure and
momentum These numerncal schemes can avoid
checkerboard pressure and velocity fields without
adopting a staggered gnd In the present analyss,
SIMPLEM 1s adopted because of its good con-
vergence charactenstics, and the pressure equation is
formulated accordingly The procedure and the strat-
egy of SIMPLEM will be discussed briefly in the next
section The pressure equation 1s derived by wrniting
the momentum equations in the following form .

u=u*+B(y0oP/0&)+C, (v éP/on) 35)
v=r*+B,(yoP/0E)+ C,(y OP/0n) (36)
where
W= Y AutS, = ¥ Av+S
EWNS EWNS
B, = —y,AlAn/A;, C,=yAlAn/A,
B, = x,AlAn/4;, C, = —x:AlAn/4,
A" = A}/A;, A = A}/A,

1=E,W,N,S (37)

and S and S' are residues after the pressure gradient
terms have been extracted

Integration of the continuity equation (equation
(1)) over the control volume yields
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(pG yAn). — (pG yAn), + (pG2yAL),
—(pG. A, =0 (38)

With the above defimuons of 4 and v. G, and G, can
be written as follows

G\ = Gt+(B,y,—Bv,) (v (PiY)

+(Ciy,—Cax,)(y CP/én)  (39a)
G- = G¥+(C,x.—C y.)y ¢ Picn)
+(Bux.— B,y )(y éP2E)  (39b)
where
Gt =u*y, —1v*x, (40a)
G =1*x.—u*y.. (40b)

With the substitution of G, and G- 1n the continuity
equation (equation (38)), the pressure equation can
be wrnitten as the algebraic equation

a,p, = A Pe+awpw+anpatasps+b  (41)
where
ar = (py* B).(An/d%).
aw = —(py*B),.(An/d¢).,
ax = —(py*C),(AL/én),
as = —(py?C)(A/dn),
a, = artantawtas
b = (pGTyAn), — (pGTrAn) +(pGrAL),
—(pG WA, + by,
B =B, cy/én—B,ixjin
C = C.ox/dE~C, ov/ée (42)

In the above equation b, 1s the contribution due to
nonorthogonality. It 1s expressed as

b = (Cyy, —Cax,)0 : cP/en)l.
—[(C iy, = Cax )™ OP/E)].
+[(Bay. — By )07 @P/EE)],

—[(Bax_— By )37 @P(EQ)), (43)
Solution procedure

The numerical scheme SIMPLEM was used to solve
the momentum and continuily equations The pro-
cedure of SIMPLEM, logether with the solution pro-
cedure of solving the coupled energy equation, can be
summarized as follows

(1) Start with assumed values for the fields u, ¢, P
and T

(2) Calculate the coeflicients ol the momentum
equations and u* and v* Use these values to find G*
and G% at grid nodes Interpolate linearly to find G¥
and G* at the control volume faces

(3) Calculate the coefficients of the pressure equa-
tion and solve 1t Lo obtain a new pressure field

J S Tsalt and A M STERLING

(4) Update G, and G- (equation (39)) at the inter-
faces using the new pressure field. and using 1 — A or
1 — Ay centered difference scheme for p

(5) Use the updated G, and G, to recalculate the
coefficients of the momentum equation and use the
new pressure field (obtained in step 2) to calculate the
pressure gradient in the momentum equation with
a 2—A¢ or 2— Ay centered difference scheme The
momentum equation can then be solved to obtain a
new velocity field, 1.c new u and ¢

(6) With the new veloaity field, calculate the
coefficients of the energy equation and solve 1t to
obtain a new temperature ficld

(7) Use the calculated . v, P and T as the new
guess, return to step 2. and repeat until a converged
solution 1s achieved

The purpose of using a centered 1 —A¢ or 1 —Apy
pressure difference scheme 1n step 4 is to detect any
oscillation occurring in the flow field, and to suppress
it immediately with the interface velocity The recal-
culation of the coefficients of the momentum equation
In step 5, after updating the interface velocities, 1s to
ensure that velocities used 1n the coefficients and the
pressure field satisfy the same continuity equation. A
more detailed discussion of the SIMPLEM pro-
cedures can be found in ref. [10] A standard tn-
diagonal matrix algorithm (TDMA) 1s used to solve
for the pressure equation in step 2, the velocity equa-
tion 1n step 5, and the temperature equation 1n step 6
The details of TDMA can be found 1n ref [8]

The grid system

The gnid system used for the present analysis, as
shown 1mn Fig 2, 1s an embedded gnid. Close to the
sphere, a spherical gnd 1s retained The remaining
flow region 1s covered with a curvilinear mesh, which
1s generated by the method developed by Knight [11]
This technique consists of solving Poisson’s equation
and performing an intermediate and final trans-
formation The generated gnd can be either orthog-
onal (with partial control of the mesh spacing) or
nearly orthogonal (with full control of mesh spacing)
In this work, we used the first of these options. Since
orthogonality 1s not required for the curvilinear mesh,
however, any other appropriate technique can be used
to generate the mesh With this embedded gnid, the
computational domain can then be as shown in Fig
4(a) Figures 4(b) and (c) show the transformed cal-
culation domain and the boundaries (meshed area)
for the curvilinear mesh and sphencal mesh, respec-
tively The calculations are carried out in each of the
two domains at each iteration, first in the curvilinear
mesh and then in the spherical mesh It can be seen
from Fig 4(b) that one row of the interior nodes 1n
the spherical mesh serves as a boundary condition for
the calculation 1n the curvilinear mesh. Figure 4(c)
indicates how the intersection between the curvilinear
mesh and the spherical mesh serves as a boundary
condition when the calculation 1s performed in the
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FiG 4(c) The computational plane for a sphencal mesh
(meshed area)

spherical mesh. It should be mentioned that the slab
corners 1n the transformed domain are points which
require special treatment. In this study the values at
the special points were obtained by hnear interp-
olation between the neighboring nodes along the axis
of symmetry 1n the physical domamn; a hnear dis-
tribution of partial denvatives 1n the neighborhood
of a special point was assumed Other techniques for
treating the special point can be found 1n ref. [12].

RESULTS AND DISCUSSION

Calculations were first carned out for a single, iso-
lated sphere immersed in flowing air. Experimental
and numerical data for this case are abundant [13).
For these calculations, all the data, as well as the
transport coefficients and thermodynamic properties
are taken directly from the work of Renksizbulut and
Yuen [13] in order to compare the present results with
therr results. The sphere temperature, air temperature,
and Prandtl number (based on free stream properties)
were taken as 353 K, 800 K, and 0.689, respectively
The transport coeflicients for air were approximated
by p=T7°% and k= T°*' The air denstty vaned
with temperature as p = 1/7 and the heat capacity
was taken as C, = 1. The envelope of the multisphere
cyhindncal cell was set at 12 radii away from the axis
of symmetry to ensure zero gradients on the envelope
The 1nlet and outlet of the cell were kept at a distance
of about 8 radu from the spheres

2497

@ PRUSENT STUDY
S+ — CONELLATION OF BLF (13)
. A mr(y)

W Er(13)
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8
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6 7 1E+D1 2 3 4 5 6

FiG 5 Drag coefficient for an 1solated solid sphere

The cnitenion of convergence between two successive
iterations was oniginally set at 10~ * 1n order to con-
serve computer time. However, 1t was found that the
resulting dependence of average Nusselt number on
Reynolds number was not smooth and tended to oscil-
late. This same phenomenon has also been reported
by Aminzadeh ef al. [4]. Therefore, a cnterion of
convergence of 10~* was used and good results were
obtained A relaxation factor of 0.8 was used for the
calculation at Reynolds numbers below 50, while for
Reynolds numbers greater than 50, a relaxation factor
of 0.6 was used

The calculated drag coefficients and average Nusselt
numbers of the 1solated solid sphere are compared
with the numerical results of Renksizbulut and Yuen
(13] m Figs 5 and 6. Note that here the Reynolds
number and the average Nusselt number are evaluated
at the film temperature The agreement between the
present results and the results of ref [13] 1s very good.
Since the numerical results in ref. [13] correlate with
a wide range of experimental data, the present results
are also 1 good agreement This favorable com-
panson validates the present analysis and the numen-
cal procedure, and justifies extending the calculations
to a multisphere system

Numerical solutions have been obtained for three-
sphere arrays with sphere spacings of 4 and 8 radn,

@ PRESINT STUDY
— CORRELATION OF REF (13)
A REF (13)

-3

1
FS
1

(Nu,-2) Pr
w
i

2 -4

FiG 6 Numerical heat transfer data for an isolated sohd
sphere
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FiG 7(a) Velocity field in the entire cylindrical cell for a three-sphere array at Re = 100 and L-R =40

FiG 7(b) Velocity field around the first and the second spheres

FiG 7(c) Veloaty field around the second and the third spheres

and an array with spheres of three different sizes. The
calculations were performed 1n a mesh consisting of a
150 x 42 gnid plus three spherical meshes with 21 x 11
gnds (see Fig 2) and the CPU time requirement 1s
typically about 30 min in a Floating Point System
(FPS) 264 to reach converged solutions for most cases
discussed below For a sphere array with spacing of 4
radu, the flow field and the 1sotherm pattern at
Re = 100 can be seen 1n Figs 7(a)-(c) and 8(a). In
Figs 7(b) and (c), 1t can be seen that the second and
third spheres clearly interact with the wake of the first
and second spheres, respectively

In Fig. 8(a), very similar 1sotherm patterns can be
observed among these three spheres, however, these
patterns are not periodic. Figure 8(b) shows the 1so-
therms of the three-droplet array with spacing of 8

radu at Re = 100 As can be seen 1n Fig 8(b), a per-
1odic behavior emerges for the 1sotherm pattern of the
second and third sphere This periodic behavior was
not observed in Tal er al s work [6], and the dis-
crepancy might be due to the shorter spacings (3 and
6 radii) used 1n their study For comparison, the 1so-
therms for the array with three different sizes of
spheres at Re = 50 are also presented here and shown
in Fig 8(c)

Figures 9(a) and (b) show the local Nusselt number
for each of three spheres with a spacing of 4 and 8
radu at Reynolds numbers of 100. It is interesting to
note in Fig. 9(a) that the wake behind the spheres at
Re = 100 tends to increase the Nusselt number 1n the
region after the polar angle of 140 (measured from the
front stagnation point) The local Nusselt numbers of
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the first sphere In the array are shghtly greater than
those for an 1solated sphere in the same region. In Fig.
9(b). however, the local Nusselt numbers around the
first sphere are the same as that of a single, 1solated

sphere This indicates that the heat transfer of the
first sphere 1s not influenced by the presence of the
downstream spheres Comparison of Figs. 9(a) and
(b) shows that the local Nusselt numbers for the
second and third spheres, at larger spacing. are higher
than those for the same spheres at smaller spacing,
which shows the sphere—sphere interaction decreases
as the spacing between the spheres increases

The result of the overall average Nusselt number
and total drag coefficient at a sphere spacing of 4 and
8 radu as a function of Reynolds number are shown
in Figs. 10 and 11, respectively These results confirm
the local vanations discussed above Particularly, 1t
can be observed that when the sphere spacing 1s
increased. the difference of the average Nusselt num-
ber and the total drag coefficient between the first
sphere and the rest of the spheres 1s reduced, 1¢. the
interacuion is reduced The value of the Nusselt num-
ber and total drag coefficient 1s higher for the first
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Fi1G 10(a) The average Nusselt number vs Reynolds number
at L/IR=4.0
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Fig 10(b) The average Nusselt number vs Reynolds number
at L/IR=80

sphere, and the values for the second and the third
spheres are nearly the same This agrees with the results
reported by Chen and Tong (5] and Tal et a/ [6]

The local Nusselt numbers for three spheres with
different sizes and equal size at Re = 50 are shown 1n
Figs. 12 and 13, respectively. In Fig. 12, the radius
of the largest sphere (third sphere) is used as the
charactenstic length for the local Nusselt number and
Reynolds number. It can be observed that the smallest
sphere (first sphere) has the highest heat transfer rate
on the sphere surface Companson between Figs. 12
and 13 indicates that the small upstream spheres give
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less influence on the heat transfer of the downstream
spheres

CONCLUSIONS

A numerical scheme, SIMPLEM, and an em-
bedded, body fitted grid are used to obtain the
solution of heat and momentum transfer in one-
dimensional sphere arrays for Reynolds numbers
from 5 to 100. The following conclusions can be
drawn from this analysis

(1) The present numerical scheme has been apphed
to a single, 1solated sphere and the results show good
agreement with the available numerical results and
experimental data

(2) The calculauons in the present analysis are
based on variable gas properties Since most practical
heat transfer problems involve large property vari-
ations, the present study appears to be more relevant
than those where constant properties are assumed

(3) The interaction between equal-size spheres 1s
found to decrease as the sphere spacing increases For
spheres with different sizes, it 1s also found that a smalil
sphere tends to have a higher heat transfer rate and
less influence on the heat transfer of the downstream
spheres
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(4) The velocity—pressure form used for the momen-
tum equation 1n the present study could be more easily
extended to three-dimensional problems than the
stream function/vorticity form used n most other
related analyses reported 1n the hiterature.

(5) For linear droplet arrays undergoing combus-
tion, the present heat transfer analysis, when coupled
with the species conservation equations. can be used
to calculate the burning rate of linear droplet arrays.
This analysis 1s currently 1 progress and the results
will be reported 1n future communications
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APPENDIX

The velocity component u at the outlet of the cylindrical
cell 1s adjusted to satisfy mass conservation at each iteration
as follows

The total mass flow rale (based on unit racian) into the
cylindnical cell 1s calculated at the cell inlet as

i
Q=3 p,u,AYY,
=1
An estimate of the total outlet flow 1s calculated using the
u component of velocity one node upstream of the exit as

Af
0= Y ptut-'AY,Y,
=1

The u component of velocity at the exit of the cylindrical
cell 1s then adjusted by
uy = u;~Q/Q)
where ; 1s the index of the node 1n the y-direction, M the
largest number of ;, AY,Y, the flow area associated with
node ;. L the index of outlet. L— | the index of the interior

nodes one node upstream from the outlet, and Q(Q) the
actual (estimated) mass flow rate

APPLICATION DE LA GRILLE NOYEE A LA RESOLUTION DU TRANSFERT DE
CHALEUR ET DE QUANTITE DE MOUVEMENT POUR DES SPHERES EN
ARRANGEMENT LINEAIRE

Résumé—L’objectif de cette etude est de prédire le transfert thermique par convection forcée pour des
sphéres dans un arrangement monodimensionne!l aligné dans la direction de I'écoulement Un arrangement
avec des spheres de diamétres différents est auss: étudié L interaction de ces sphéres est le fait marquant
de I'analyse Les équations de Navier-Stokes, sous la forme pression-vitesse et I'équation d'énergie sont
résolues numériquement par une méthode 1térative aux différences finies dans une gnlle noyée. On étudie
le domaine de nombre de Reynolds de 5 & 100 pour deux espacements des sphéres La distnbution de
température autour des sphéres et le coefficient de trainée sont calculés amsi que le nombre de Nusselt
autour des sphéres Les résultats montrent un bon accord avec ceux numeériques ¢l expérnmentaux de la
hittérature
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ANWENDUNG EINES FESTEN GITTERS ZUR LOSUNG DES WARME- UND
IMPULSTRANSPORTS FUR KUGELN IN EINEM LINEAREN FELD

Zusammenfassung—Z1e! dieser Unlersuchung 1st die Berechnung des Warmetransporls 1in erzwungener
Stromung 1n emem Feld von Kugeln, welche hinteremnander angeordnet sind Neben gleichen Kugeln
wurde auch emn Feld mit Kugeln unterschiedlicher Grofle betrachtet Die gegenseitige Beeinflussung der
Kugeln 1st ein wesenthicher Gesichispukt der Untersuchung Die Navier—Stokes-Gleichungen (in Druck-
Geschwindigkertsform) und die Energiegleichung werden numensch mit Hilfe emner iterauven Finite-
Differenzen-Methode gelost Daber wird ein festsiehendes. an den Kugeln zentniertes Gitter benutzt Die
Untersuchungen werden fur zwei verschiedene Kugelabstande und Reynolds-Zahlen 1im Bereich von 5-100
durchgefuhrt Es wird sowohl die Temperaturvertellung in der Umgebung des Kugelfeldes als auch der
Widerstandsbeiwert und die Nusselt-Zahlen an den Kugeloberflachen berechnet Die Ergebnisse zeigen
eme gute Ubereinstimmung mit numerischen und experimentelien Ergebnissen aus der Literatur

NPUMEHEHHE METOOA CETOK /U4 PELIEHHUA 3AJJAY IIEPEHOCA TEIUIA N
UMITYJIBCA B IMHEMHOM LETIOYKE C®EP

Amsoramms—[JeTbl0 NaHHOTO HCCNEAOBAHHA ABJIACTCA MPEACKA3aHME TEILUIONCPEHOCA BBIHYRICHHOM
KOHBEXIAM B OJHOMEDHON Lienodxe chep, PaCnOIOKCHHLIX B HanpamjieHHW TeweHun. PaccmatpaBaetcs
Taxxe cnydail uenouxn cep pa’iHIHLIX pasMepos. OcOGEHHOCTDIO aHANM3a ABNKETCA B3aBMoacHcTBHe
mexay chepamn VpasHernns HaBbe-CTOXCa B XOOpAHHAaTax “CKOpPOCTb H AabJieHHe”, a TaKXe ypaBHe-
HHe COXPaHEHHA SHCPrHE PCIUalOTCH THCJICHHO WTEPAMHOWHAIM KOHETHO—Pa3HOCTHHIM MeTtoaom Hccie-
nyeTcA IOHanaloH 3HavcHEA 4wHcina Pelimonbnca 5-100 ans mByx NpOMExXYyTKOB MekAy cepamm
PaccanTLIBaIOTCA pacpezelieHAe TEMIIEPaTyPhl BOKPYT LENoYkH cep, 3 Takke K03pUUMEHT conpo-
TaBjeHHd u wucio Hyccenbta Boxpyr mx mopepxHocTeli. [Tonydennnie pe3ynbTaTh XOpowlo corna-
CYIOTCS C HMEIOIMMACA B JTHTEPATYPC THCIICHHLIMH H XCTIEPAMCHTA/ILHLIMY NaHHBIMH



